NG-14 Mission

Delivering Cargo to the International Space Station

Launch Profile

Stage Two Ignition

 Time: 4 min 7 sec Orbit Altitude: 118 km (73.3 mi.)Interstage Separation
Time: 3 min 59 sec
Orbit Altitude: 114 km (70.8 mi .)

Stage Two Burnout/Orbit Insertion Time: 6 min 52 sec Orbit Altitude: 178.3 km (110.8 mi.)

5 Fairing Separation
Time: 3 min 54 sec Orbit Altitude: 111 km (68.9 mi .)

4 Stage One Separation

Time: 3 min 24 sec
Orbit Altitude: 88.9 km (55.2 mi.$)$

3 Main Engine Cut-Off (MECO) Time: 3 min 18 sec Orbit Altitude: 83.9 km (52.1 mi .)

Lift Off
Time: 3.7 sec
Orbit Altitude: $0 \mathrm{~km}(0 \mathrm{mi}$.)

Stage One Ignition
Time: 0 sec
Orbit Altitude: 0 km (0 mi .)
*not drawn to scale

Mission Parameters

Launch Vehicle: Antares 230+

Cargo Spacecraft:
Cygnus
Launch Site:
MARS Pad 0A,
Wallops Island, Virginia
Ascent Cargo Mass: Approx. 3,400 kg (7,500 lb.)

Descent Cargo Mass:
Up to $3,700 \mathrm{~kg}(8,100 \mathrm{lb}$.
Initial Orbit Altitude:
$171 \mathrm{~km} \times 295 \mathrm{~km}$
Inclination:
51.63°
Transit to Station:
Two Days
Duration at Station: Up to 90 Days Berthed Up to two weeks on orbit

Mission Description

For the NG-14 mission, the Cygnus spacecraft will deliver approximately $3,629 \mathrm{~kg}(8,000 \mathrm{lb}$.) of cargo to the space station. Cygnus is comprised of two primary components, the Pressurized Cargo Module and the Service Module. In keeping with company tradition, each spacecraft is named after an important figure in the aerospace industry. Northrop Grumman is honored to name the NG-14 Cygnus spacecraft after the first woman of Indian descent to fly in space, Kalpana Chawla. The S.S. Kalpana Chawla will be launched into orbit using an Antares 230+ rocket
from Virginia Space's Mid-Atlantic Regional spaceport (MARS) Pad OA on Wallops Island, Virginia. Northrop Grumman will once again load critical cargo into Cygnus, 24 hours before the scheduled launch.

Upon arrival at the International Space Station, the cargo will be unloaded from Cygnus. For the fifth time, Cygnus will host the Spacecraft Fire Experiment-V (Saffire-V) experiment to study the behavior of large-scale fires in microgravity that will be performed once the spacecraft departs the station. The mission will also
carry Northrop Grumman's SharkSat payload, an internally developed prototype supporting on-orbittechnology demonstrations. Utilizing a streamlined development approach, SharkSat will allow engineers to evaluate emerging technologies in the space environment. SharkSat is driving rapid innovation in technology development processes and building Northrop Grumman's next generation of engineering leaders. Once its mission has been completed, Cygnus will perform a safe, destructive reentry into Earth's atmosphere over the Pacific Ocean.

northropgrumman.com
©2020 Northrop Grumman
D20_12534

