

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSLI Z540-1-1994 & ANSI/NCSLI Z540.3-2006

NORTHROP GRUMMAN SYSTEMS CORPORATION, AEROSPACE SYSTEMS

One Space Park, S/2746 Redondo Beach, CA 90278 Robert Tobias Phone: 310 812 1430

CALIBRATION

Valid To: July 31, 2016 Certificate Number: 3005.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following calibrations¹:

I. Electrical – DC/Low Frequency

Parameter/Equipment	Range	CMC ² (±)	Comments
Resistance – Measure, Fixed Points	$\begin{array}{c} 10 \; \mu\Omega \\ 100 \; \mu\Omega \\ 1 \; m\Omega \\ 10 \; m\Omega \\ 100 \; m\Omega \\ 1 \; \Omega \\ 100 \; \Omega \\ 1 \; k\Omega \\ 100 \; \Omega \\ 1 \; k\Omega \\ 10 \; k\Omega \\ \end{array}$	$\begin{array}{c} 20 \; \mu\Omega/\Omega \\ 10 \; \mu\Omega/\Omega \\ 5.0 \; \mu\Omega/\Omega \\ 2.0 \; \mu\Omega/\Omega \\ 2.0 \; \mu\Omega/\Omega \\ 1.0 \; \mu\Omega/\Omega \\ 0.30 \; \mu\Omega/\Omega \\ 0.50 \; \mu\Omega/\Omega \\ 1.0 \; \mu$	MI-6010C/MI-6011A MI-6000A
DC Voltage – Measure, Fixed Points	0.1 V 1 V 10 V 100 V 1000 V	1.3 µV/V 1.1 µV/V 1.1 µV/V 1.2 µV/V 1.2 µV/V	Fluke-732A w/ Fluke 752 voltage divider

(A2LA Cert. No. 3005.01) 09/05/2014

Peter Mbyer

Parameter/Range	Frequency	CMC ^{2, 3} (±)	Comments
AC Voltage – Measure			
10 mV	10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz	98 μV/V 90 μV/V 90 μV/V 90 μV/V 0.016 % 0.038 %	Fluke-792, AC standard
100 mV	10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz	44 μV/V 30 μV/V 22 μV/V 22 μV/V 43 μV/V 0.020 %	
1 V	10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz	26 μV/V 9.0 μV/V 7.1 μV/V 7.1 μV/V 11 μV/V 43 μV/V	
10 V	10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz	26 μV/V 8.0 μV/V 6.0 μV/V 6.1 μV/V 9.0 μV/V 41 μV/V	
100 V	10 Hz 100 Hz 1 kHz 10 kHz 100 kHz	26 μV/V 8.4 μV/V 8.0 μV/V 8.0 μV/V 17 μV/V	
1000V	40 Hz 100 Hz 1 kHz 10 kHz 20 kHz	22 μV/V 20 μV/V 18 μV/V 18 μV/V 19 μV/V	

Peter Mhye Page 2 of 6

II. Electrical – RF/Microwave

Parameter/Range	Frequency	CMC ^{2, 3} (±)	Comments
RF Attenuation (Transmission S21/S12) –			
Fixed/Variable Coaxial for Type "2.4 mm"			Network analyzer HP 8510C
20 dB	(0.045 to 2) GHz (2 to 20) GHz (20 to 40) GHz (40 to 50) GHz	0.042 dB 0.064 dB 0.16 dB 0.28 dB	
Fixed/Variable Coaxial for Type "3.5 mm"			
20 dB	(0.045 to 2) GHz (2 to 8) GHz (8 to 20) GHz (20 to 26.5) GHz	0.058 dB 0.08 dB 0.091 dB 0.14 dB	
Fixed/Variable Coaxial for Type "WR-22"		0.14 u D	
20 dB	(33 to 50) GHz	0.068 dB	
Fixed/Variable Coaxial for Type "WR-15"			
20 dB	(50 to 75) GHz	0.08 dB	
Fixed/Variable Coaxial for Type "WR-10"			
20 dB	(75 to 110) GHz	0.12 dB	
RF Power –			
Coaxial Power Sensor 1 mW 1 mW	100 kHz to 1 GHz (1 to 50) GHz	1.8 % 5.5 %	NGAS universal auto power system
Waveguide Power Sensor Q-Band System @ 50 GHz V-Band System @ 75 GHz W-Band System @ 110 GHz	(33 to 50) GHz (50 to 75) GHz (75 to 110) GHz	3.4 % 1.8 % 3.9 %	NGAS bench power system

Peter Mhyer Page 3 of 6

	<u> </u>		
Parameter/Range	Frequency	$CMC^{2}(\pm)$	Comments
VSWR Gamma (Reflection S11/S22) –			
Fixed/Variable Coaxial for Type "2.4 mm"			
0.0050 Reflection Coefficient	(0.045 to 2.0) GHz	0.0097	Network analyzer HP 8510C
0.0072 Reflection Coefficient	(2.0 to 20.0) GHz	0.0099	
0.0261 Reflection Coefficient	(20.0 to 40.0) GHz	0.015	
0.0440 Reflection Coefficient	(40.0 to 50.0) GHz	0.02	
Fixed/Variable Coaxial for Type "3.5 mm"			
0.0090 Reflection Coefficient	(0.045 to 2.0) GHz	0.0052	
0.0095 Reflection Coefficient	(2.0 to 8.0) GHz	0.0077	
0.0261 Reflection Coefficient	(8.0 to 20.0) GHz	0.0078	
0.0177 Reflection Coefficient	(20.0 to 26.5) GHz	0.0079	
Fixed/Variable Coaxial for Type "WR-22"			
0.0017 Reflection Coefficient	(33 to 50) GHz	0.0053	
Fixed/Variable Coaxial for Type "WR-15"			
0.0065 Reflection Coefficient	(50 to 75) GHz	0.0044	
Fixed/Variable Coaxial for Type "WR-10"			
0.0063 Reflection Coefficient	(75 to 110) GHz	0.0063	

Peter Mbnyer

Parameter/Range	Frequency	CMC ² (±)	Comments
Noise Figure and Excess Noise Ratio –			
Coaxial			
APC-7	(0.030 to 18) GHz	0.12 dB	Agilent N8975A noise figure analyzer (NFA)
3.5 mm	(0.010 to 10.0) GHz (10 to 26.5) GHz	0.19 dB 0.24 dB	1.8 4.10 4.1.4.7
2.4 mm	(1 to 10) GHz (10 to 20) GHz (20 to 40) GHz (40 to 50) GHz	0.22 dB 0.26 dB 0.29 dB 0.55 dB	
Waveguide			
WR-42	(18 to 20) GHz (20 to 22) GHz (22 to 26) GHz	0.27 dB 0.31 dB 0.29 dB	Agilent 8970B (NFA) NGAS down converter system
WR-28	(26.5 to 40) GHz	0.21 dB	
WR-22	(33 to 40) GHz (40 to 44) GHz (44 to 50) GHz	0.18 dB 0.21 dB 0.28 dB	
WR-15	(50 to 75) GHz	0.24 dB	
WR-10	(75 to 80) GHz (80 to 85) GHz (85 to 95) GHz (95 to 100) GHz	0.36 dB 0.51 dB 0.45 dB 0.59 dB	

Peter Mhyer Page 5 of 6

III. Time & Frequency

Parameter/Equipment	Frequency	CMC ² (±)	Comments
Cesium Frequency Reference –	10 MHz	1.0 pHz/Hz	Agilent-5071A with high performance option 001
Frequency Offset (GPS Transfer Standard)	10 MHz	2.0 pHz/Hz	Symmetricom-Xli GPS receiver

¹ This laboratory offers commercial calibration service.

Peter Mhyer

² Calibration and Measurement Capability Uncertainty (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. CMC's represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

³ In the statement of CMC, percentages are percentage of reading, unless otherwise indicated.

American Association for Laboratory Accreditation

Accredited Laboratory

A2LA has accredited

NORTHROP GRUMMAN SYSTEMS CORPORATION, AEROSPACE SYSTEMS

Redondo Beach, CA

for technical competence in the field of

Calibration

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This laboratory also meets the requirements of ANSI/NCSLI Z540-1-1994 and the requirements of ANSI/NCSLI Z540.3-2006 and any additional program requirements in the field of calibration. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 5th day of September 2014.

President & CEO

For the Accreditation Council Certificate Number 3005.01

Valid to July 31, 2016

For the calibrations to which this accreditation applies, please refer to the laboratory's Calibration Scope of Accreditation.